Russ Steele
Joanna D. Haigh, Imperial College, London has written an interesting paper,The Sun and the Earth’s Climate, that examines what we know, and what we do not know, about how our sun is connected to our climate. Lots of graphs and explanation, rather long, but very interesting for those really interested in the subject.
Here are her conclusions, there is a lot scientists do not know:
Radiation from the Sun ultimately provides the only energy source for the Earth’s atmosphere and changes in solar activity clearly have the potential to affect climate. There is statistical evidence for solar influence on various meteorological parameters on all timescales, although extracting the signal from the noise in a naturally highly variable system remains a key problem. Changes in total solar irradiance undoubtedly impact the Earth’s energy balance but uncertainties in the historical record of TSI mean that the magnitude of even this direct influence is not well known. Variations in solar UV radiation impact the thermal structure and composition of the middle atmosphere but details of the responses in both temperature and ozone concentrations are not well established. Various theories are now being developed for coupling mechanisms whereby direct solar impacts on the middle atmosphere might influence the troposphere but the influences are complex and non-linear and many questions remain concerning the detailed mechanisms which determine to what extent, where and when the solar influence is felt. Variations in cosmic radiation, modulated by solar activity, are manifest in changes in atmospheric ionisation but it is not yet clear whether these have the potential to significantly affect the atmosphere in a way that will impact climate.
Further advances in this field require work on a number of fronts. One important issue is to establish the magnitude of any secular trends in total solar irradiance (TSI). This may be achieved by careful analysis and understanding of the satellite instruments involved in collecting data over the past two-and-a-half solar cycles, and must be continued through analysis of data from current and new satellites. For longer periods it requires a more fundamental understanding of how solar magnetic activity relates to TSI. This would not only facilitate more reliable centennial-scale reconstructions of TSI, from e.g. sunspot records, but also advance understanding of how cosmogenic isotope records may be interpreted as historical TSI.
With regard to the climate, further data-mining and analysis are required to firmly establish the magnitude, geographical distribution and seasonality of its response to various forms of solar activity. Understanding the mechanisms involved in the response then becomes the overriding objective. Current ideas suggest three main avenues where further research is needed. Firstly, the means whereby solar radiative heating of the upper and middle atmosphere may influence the lower atmosphere through dynamical coupling needs to be better understood. Secondly, it needs to be established whether or not variations in direct solar heating of the tropical oceans can be of sufficient magnitude to produce apparently observed effects. Thirdly, more work is needed on the microphysical processes involved in ion-induced nucleation, and, probably more importantly, the growth rates of the condensation nuclei produced.
Perhaps when these questions are answered we will be confident that we really understand how changes in the Sun affect the climate on Earth.
Russ, I don't know if know, but the next cycle finally arrived!
http://wattsupwiththat.wordpress.com/2008/01/04/solar-cycle-24-has-officially-started/
Posted by: Andrew | January 04, 2008 at 07:59 PM