Many of sciences great discoveries have been the result of looking for X and discovering Y.
Though still under construction, the IceCube Neutrino Observatory at the South Pole is already delivering scientific results — including an early finding about a phenomenon the telescope was not even designed to study.
This "skymap," generated in 2009 from data collected by the IceCube Neutrino Observatory, shows the relative intensity of cosmic rays directed toward the Earth’s Southern Hemisphere. Researchers from UW-Madison and elsewhere identified an unusual pattern of cosmic rays, with an excess (warmer colors) detected in one part of the sky and a deficit (cooler colors) in another.
Photo: courtesy IceCube collaboration
IceCube captures signals of notoriously elusive but scientifically fascinating subatomic particles called neutrinos. The telescope focuses on high-energy neutrinos that travel through the Earth, providing information about faraway cosmic events such as supernovas and black holes in the part of space visible from the Northern Hemisphere.
However, one of the challenges of detecting these relatively rare particles is that the telescope is constantly bombarded by other particles, including many generated by cosmic rays interacting with the Earth's atmosphere over the southern half of the sky. For most IceCube neutrino physicists these particles are simply background noise, but University of Wisconsin-Madison researchers Rasha Abbasi and Paolo Desiati, with collaborator Juan Carlos Díaz-Vélez, recognized an opportunity in the cosmic ray data."IceCube was not built to look at cosmic rays. Cosmic rays are considered background," Abbasi says. "However, we have billions of events of background downward cosmic rays that ended up being very exciting."
Abbasi saw an unusual pattern when she looked at a "skymap" of the relative intensity of cosmic rays directed toward the Earth's Southern Hemisphere, with an excess of cosmic rays detected in one part of the sky and a deficit in another. A similar lopsidedness, called "anisotropy," has been seen from the Northern Hemisphere by previous experiments, she says, but its source is still a mystery.More details here.
I find it interesting that some scientist speculate that high energy cosmic rays influence the amount of low cloud cover, which has an impact on global temperatures. We are waiting for the results of the CLOUD experiment at CERN, to add credence to the claim, or to disprove the connection. Stay tuned!H/T to Watts Up With That for this interesting bit of science news.
Recent Comments